

Create FMEAs worldwide, easily and in a team

powered by e1ns Technology

FMEA Definition

• FMEA = Failure Mode and Effects Analysis

Preventive method for qualitative evaluation and avoidance of potential defects in products and processes.

Target:

- Error prevention instead of error correction (early use!)
- Early detection of potential business interruptions
- Increased functional safety and reliability of products and processes
- Development of counteractions to avoid errors

FMEA - Important Part of the Development Process

FMEA - More than just a method

- Systematic and practical implementation of the FMEA methodology through the central database
- Connection to an integrated action management system for processing FMEA actions
- Storage of documents (e.g. risk management files) in the document management system
- Networking of engineering methods ensures optimal information exchange and automatically makes current data from the FMEA everywhere available
- Reuse of knowledge and use of existing FMEAs is provided by templates adapted to the needs of system analysis and risk management

FMEA Analysis Principle

4

7 Steps of FMEA according to VDA-AIAG

SYSTEM ANALYSIS

FAILURE ANALYSIS AND RISK REDUCTION

e1ns.aspects

Scoping

Structure Analysis

Function Analysis

Development of products and processes

- Definition of tasks and scope of investigation
- Differentiation of the considered system
- Modeling an architecture
- Visualization of system behavior
- Uniform system representation
- View as block structure diagram
- Use of the SysML standard

Separate process modeling via flow diagrams:

6

e1ns.architect

- System construction in structure depths (QFD approach)
- Linking design and process
- Visualization via a structural net
- Linking of functions and elements

63

Scoping Structure Analysis Function Analysis

- Requirements and functions are specified
- Functional relationships are identified
- Influence of process steps on product functionalities becomes comprehensible
- Creation of the function net

Failure Analysis

Risk Analysis

Optimization

- Each requirement is examined for non-compliance.
- The system uses the failure net to check for potential system failure.
- Failure nets provide data for the **FMEA**.
- Safety functions (Functional Safety) are defined and linked in a comprehensible way for failures.

e1ns.methods

- Failure net and functional analysis automatically fills the **FMEA** form.
- Failure, effect and cause are entered from the structure into the form.

eins

h >= 50 %

- A newsletter provides regular information on open actions.
- Easy access via an action portal. The FMEA software does not need to be started (installed).
- Each user has his own scheduling overview.

ns.foundatio	n 🔻 » Schedule	overview 👻	-	_	_	-	-	_	_	÷	
					Personal Tasks Own System Elements (Team) from 04/01/2016 to 08/21/2018						
Target date ≑	System element \$	SE type	RPN1	Failure	Cause	RPN2	Status	Recommended action	Action taken	Responsible person	
05/05/2016	Battery gas measuring device STD	System/Design	90	Leak protection not ensured	Electrolyte etches hole in battery casing	90	60	P: Additional coating of battery casing	P: Additional coating of battery casing	Plato	
06/23/2016	Final assembly gas measuring device STD	Process	270	Test results misinterpreted	Error in control plan	54	60	D: Additional review of control plans	D: Additional review of control plans	Plato	
04/13/2017	Final assembly gas measuring device STD	Process	180	Bonding insufficient	Amount of adhesive too small	45	Eval.	P: Automatic dosing of adhesive	P: Automatic dosing of adhesive	Plato	
04/13/2017	Final assembly gas measuring device STD	Process	120	Adhesive in visible locations	Amount of adhesive too high	30	Eval.	P: Automatic dosing of adhesive	P: Automatic dosing of adhesive	Plato	
05/01/2017	Bicycle	Requirement	112	Lifetime is limited	Resistance to environmental influences is insufficient	84	20	P: Adjusting material selection	P: Adjusting material selection	Plato	
05/28/2017	Final assembly gas measuring device STD	Process	112	Screw joint insufficient	Screw defective	64	80	D: Implement additional visual control in SOP	D: Implement additional visual control in SOP	Plato	
05/28/2017	Final assembly gas measuring device STD	Process	112	Screw joint insufficient	Screw defective	64	Eval.	D: Implement additional visual control in SOP	D: Implement additional visual control in SOP	Plato	

Results Documentation

Reports for communication with management and customers

- Company-specific layout of the documentation (FMEA file)
- Summarized report
- Scope of FMEA results
- S/O/D rating tables
- Action priority
- Results and conclusions of the analysis
- •••

FMEA connected

Powered by e1ns Technology

FMEA Connected

100% web-based

System model on one data basis

Collaboration/ Communication

Method toolbox

Lessons Learned

- Reduced IT effort No local installation necessary
- Instant access to current data in the private cloud across all locations for every team member
- Work anytime and from anywhere
- Changes are applied consistently
- No compatibility problems (e.g. through operating systems)
- High data security
 - Authorized access to the system (access rights, role concept, password)

FMEA - System Model on One Database

- System model is the basis for all activities in development and process planning
- Central structure for anchoring requirements, risk analyses, tasks, documents, proofs...
- Different departments work simultaneously on the model and have the same system understanding
- Up-to-dateness and consistency are guaranteed
- Easy orientation due to known structure
- All data have one "data pool"

FMEA - Worldwide, Simple and in a Team

100% web-based

System model on one data basis

Collaboration/ Communication

Method toolbox

Lessons Learned

- All employees work at the FMEA at any time and from any location - worldwide
- Everyone has the same understanding of the system knowledge is immediately available to everyone
- Each employee has his own perspective on the data and contributes their knowledge
- Notification concept informs the team about changes
- High acceptance through intuitive handling
- Workflows can be controlled by action hierarchies

Depth functionality

System FMEA

Comprehensive analysis

Creating Basic FMEAS

Complete existing FMEAs

Usage of FMEA - Templates

Read FMEAS

Display structures

© PLATO AG, FMEA Connected

FMEA - Flexible Method Toolbox

- Ensuring quality in accordance with legal requirements through standard methods
- Individually adaptable to company requirements
- Flexible form design according to VDA and AIAG
- Own calculation models and catalogs
- Interconnecting methods for optimal information exchange
- Familiar working method in tabular and network view
- Simple analysis in matrices
- Trigger workflow for avoidance actions directly from the FMEA

FMEA - Lessons Learned

100% web-based

System model on one data basis

Collaboration/ Communication

Method toolbox

Lessons Learned

Working with released standard templates

- Use of templates reduces the work and time required to create and maintain FMEAs
- Company-wide and uniform way of working
- Newly acquired knowledge is quickly transferred into current and future projects
- Defined release workflows ensure that only released templates are available
- Template users are notified about updates

FMEA - Lessons Learned

Author of Templates

Knowledge

Release

Templates

Transfer

20

PLATO e1ns

All modules in the cloud of your company

Questions?

Please contact us!

Phone +49 451 930 986 0 Email info@plato.de

